The Crystal Structure of Bis(ethylenediamine)copper(II) Thiocyanate

By Bruce W. Brown and E. C. Lingafelter
Department of Chemistry, University of Washington, Seattle, Washington, U.S.A.

(Received 4 December 1962)
The crystal structure of bis(ethylenediamine)copper(II) thiocyanate, $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$, has been determined by three-dimensional X-ray methods. The compound is triclinic with space group $P \overline{1}$ and cell dimensions

$$
a=7.352, b=9.364, c=6.585 \AA ; \alpha=86^{\circ} 56^{\prime}, \beta=113^{\circ} 23^{\prime}, \gamma=125^{\circ} 8^{\prime} .
$$

Abstract

The intensities were obtained from unidirectionally integrated equi-inclination Weissenberg photographs from $h 0 l$ to $h 5 l$, with 276 of the 912 reflections too weak to be recorded. The structure was refined to an R of 0.077 , individual atom anisotropic temperature factor coefficients being used with the Busing \& Levy full-matrix least-square program.

The arrangement of the ligands about the copper atom has the amino nitrogen atoms at the corners of a rectangle with a mean $\mathrm{Cu}-\mathrm{N}$ distance of $2 \cdot 00 \AA$ and the sulfur atom of (SCN) completing a distorted octahedron at the longer distance of $3 \cdot 27 \AA$. The ethylenediamine molecule has an unsymmetrical gauche form with the carbon atoms +0.16 and $-0.53 \AA$ from the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ plane.

Introduction

Two transition metal ions whose coordination configurations have been of interest to inorganic chemists for many years are bivalent nickel and copper. These ions bear the interesting relationship that with some ligands identical structures are formed whereas with other ligands the structures are different.

The structure of trans-bis(ethylenediamine)bis(isothiocyanato)nickel(II) (Brown \& Lingafelter, 1963) exhibits some interesting features: first, the ethylenediamine molecule has the gauche form with the carbon atoms symmetrically arranged above and below the $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ plane; second, the bond to the thiocyanate group is through the nitrogen atom as in other coordination compounds of metals of the first transition period (Shaffer, 1959); and, third, the valence angle of 140° ($\mathrm{Ni}-\mathrm{N}-\mathrm{C}$) to the thiocyanate group is more acute than in any other octahedral thiocyanate complex whose structure has been determined.

In view of the structural features of $\left[\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right]$, it was felt that the copper compound would provide an interesting comparison.

The dihydrate of bis(ethylenediamine)copper(II) thiocyanate has been prepared (Grossman \& Schuck, 1906) by the addition of a potassium thiocyanate solution to an alcoholic solution of bis(ethylenediamine)copper(II) bromide. No crystallographic data have been reported concerning this compound.

Experimental

Bis(ethylenediamine)copper(II) sulfate was prepared by the addition of a stoichiometric amount of ethylenediamine to an aqueous solution of copper sulfate at room temperature. Conversion to the thiocyanate
was accomplished by adding a barium thiocyanate solution with rapid stirring, and filtering off the precipitated barium sulfate. The aqueous solution was vacuum dried over anhydrous calcium chloride, and deep blue-violet prismatic crystals of the anhydrous compound were obtained from slow cooling of a hot methanol solution. The crystals are tablets on $\{101\}$, elongated in the b direction.
Cell dimension data were obtained from rotation and zero level Weissenberg films, taken about the three axes, on which the diffraction pattern of sodium chloride ($a_{0}=5.63874 \AA$) was superimposed to calibrate the camera dimensions. The cell parameters are:

$$
\begin{array}{ll}
a=7 \cdot 352 \pm 0 \cdot 008 \AA & \alpha=86^{\circ} 56^{\prime} \\
b=9 \cdot 364 \pm 0 \cdot 005 & \beta=113^{\circ} 23^{\prime} \\
c=6.585 \pm 0.016 & \gamma=125^{\circ} 8^{\prime}
\end{array}
$$

There were no systematic extinctions, indicating, with the Lave symmetry $\overline{1}$, that the space group is probably $P \overline{1}\left(C_{i}^{1}\right)$ or $P \mathbf{1}\left(C_{1}^{1}\right)$. The observed density of 1.569 g.cm ${ }^{-3}$ corresponds to a formula weight of $297 \cdot 8$, which agrees with the calculated formula weight of $299 \cdot 9$ for $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$, indicating that there is one molecule per cell.
Multiple film equi-inclination Weissenberg photographs were taken about the b axis with a Nonius integrating camera for all levels from the zero to the fifth. The singly integrated photographs were photometered in a direction normal to the integration direction, a Moll-type densitometer being used. The interfilm ratio was determined for each level from the measured values for common reflections. The intensities were corrected for Lorentz and polarization factors in the usual manner. Additional photographs were taken of the $a^{*} b^{*}$ net with an integrating preces-
sion camera (Stewart \& Lingafelter, 1960) in order to scale the several Weissenberg photographs together. More accurate scaling of the levels was done by comparing the observed structure factors with the calculated values in later stages of the structure determination.

A total of 912 reflections were observed, with 276 having relative intensities 'less-than' 1 in a range of 5000 , except that on the fifth level the minimum observed intensity was 5.

The structure determination

The space group was assumed to be $P \overline{1}$, and this choice of space group was corroborated by the structure determination. The copper was assigned the position $0,0,0$.

The Patterson projection $P(x, z)$ was calculated from the values of $F_{\text {rel }}^{2}$ for the 61 observed non-zero $h 0 l$ reflections, and the prominent copper-sulfur vector gave an approximate sulfur position, but no additional structural details were obtainable. The electron-density projection $\varrho(x, z)$ was obtained with the phase angles determined from a structure factor calculation based on the copper and sulfur positions. This calculation, which has an R of 0.48 , when compared with the final results, had 16 terms with erroneous phase angles accounting for 8% of the ΣF_{o}; the discrepancy index, R, is defined as $\Sigma\left[\left|F_{o}\right|-\left|F_{c}\right|\right] /$ $\Sigma\left|F_{o}\right|$ for observed non-zero reflections only.

It was not possible to obtain a trial structure from subsequent electron-density and difference synthesis maps on the $h 0 l$ data.

The atomic scattering factors used for these and all subsequent structure factor calculations were: for copper, those of Thomas \& Umeda (1957); sulfur, values obtained by interpolation between those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955) and Hartree (1935); carbon and nitrogen, Berghuis et al. (1955); and hydrogen, McWeeny (1951).

The three-dimensional Patterson synthesis was then calculated from the values of $F_{\text {rel }}^{2}$ for the 636 observed non-zero $h 0 l$ through $h 5 l$ reflections. Five of the six light atoms and the sulfur atom were located in this Patterson synthesis, and the remaining light atom from a subsequent Fourier synthesis using phase angles determined from a structure factor calculation using those atomic positions obtained from the Patterson synthesis. Successive refinement cycles were used to refine the atomic parameters and individual atom isotropic temperature factor coefficients to give a structure which, when used in a structure factor calculation, gave an R of $0 \cdot 14$. The $\overline{1} 01,010$, and $\overline{1} 20$ reflections were not included in these or subsequent calculations because of partial obscuring of the diffracted X-ray beam by the camera beam-stop. The value of F_{c} was used in place of F_{o} for these reflections in electrondensity calculations.

The atomic parameters and the individual atom isotropic temperature factors were refined by two cycles of full-matrix least-squares refining as programmed by Busing \& Levy (1959) for the IBM Type 704 EDPM. The function $\Sigma w\left(F_{o}-\left|F_{c}\right|\right)^{2}$ was minimized with a modified version of the Hughes weighting

Fig. 1. Difference synthesis section at $x=0.40$ with individual atom isotropic temperature factor coefficients. Contour interval $0.25 \mathrm{e} . \AA^{-2}$, negative contours broken.

Table 1. $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}-$ Final atomic parameters

Atom	x / a	y / b	z / c	B	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	0.0000	$0 \cdot 0000$	$0 \cdot 0000$		$5 \cdot 87$	$6 \cdot 33$	$4 \cdot 06$	$3 \cdot 67$	$2 \cdot 91$	$4 \cdot 06$
S	0.5945	0.2303	0.3451		$6 \cdot 94$	$9 \cdot 76$	$6 \cdot 70$	5•19	$5 \cdot 11$	$6 \cdot 70$
N(1)	0.4142	$0 \cdot 2138$	$0 \cdot 6521$		$5 \cdot 92$	$9 \cdot 38$	$5 \cdot 52$	$5 \cdot 33$	$3 \cdot 28$	$5 \cdot 52$
$\mathrm{N}(2)$	0.0765	$0 \cdot 1994$	-0.1661		$5 \cdot 23$	$6 \cdot 46$	$4 \cdot 21$	$3 \cdot 46$	$2 \cdot 68$	$4 \cdot 21$
$\mathrm{N}(3)$	-0.0403	$0 \cdot 1316$	$0 \cdot 1859$		$4 \cdot 46$	4.92	$3 \cdot 86$	$3 \cdot 15$	$2 \cdot 12$	$3 \cdot 86$
C(1)	$0 \cdot 4959$	$0 \cdot 2226$	0.5294		$2 \cdot 95$	$5 \cdot 69$	$4 \cdot 23$	$2 \cdot 03$	$1 \cdot 64$	$4 \cdot 23$
$\mathrm{C}(2)$	$0 \cdot 1582$	$0 \cdot 3588$	-0.0149		$7 \cdot 67$	$5 \cdot 03$	$7 \cdot 84$	8.32	$5 \cdot 16$	$7 \cdot 84$
$\mathrm{C}(3)$	-0.0260	$0 \cdot 2801$	0.0922		$7 \cdot 24$	$6 \cdot 11$	$6 \cdot 28$	$5 \cdot 67$	$4 \cdot 68$	$6 \cdot 28$
$\mathrm{H}(1)$	-0.077	$0 \cdot 159$	-0.310	3.807						
$\mathrm{H}(2)$	$0 \cdot 213$	0.232	-0.205	$3 \cdot 807$						
$\mathrm{H}(3)$	$0 \cdot 146$	$0 \cdot 452$	-0.112	$4 \cdot 801$						
$\mathrm{H}(4)$	$0 \cdot 346$	0.426	$0 \cdot 115$	$4 \cdot 801$						
$\mathrm{H}(5)$	0.039	$0 \cdot 383$	$0 \cdot 226$	$4 \cdot 151$						
$\mathrm{H}(6)$	-0.207	0.233	-0.037	$4 \cdot 151$						
$\mathrm{H}(7)$	0.096	$0 \cdot 180$	$0 \cdot 346$	$3 \cdot 254$						
H(8)	$-0 \cdot 207$	$0 \cdot 047$	$0 \cdot 186$	$3 \cdot 254$						

Note: The several $U_{i j}$ are listed as $U . U U \times 10^{2} \AA^{2}$.

Table 2. Observed and calculated structure factors
Values shown are $10 F_{o}$ and $10 F_{c}$. Minus sign on F_{o} signifies 'less-than'.

scheme (Hughes, 1941). These and subsequent cycles were carried out on the IBM Type 709 at the University of Washington Research Computer Laboratory, utilizing the IBM Compatibility II program to simulate the Type 704 on the Type 709 machine.

The value of R remained at $0 \cdot 14$ after these two refinement cycles with isotropic temperature factors. A difference synthesis showed the presence of anisotropic thermal motion in the molecule. A section at
$x=0.40$ is shown in Fig. 1, where the anisotropy about the sulfur and nitrogen atoms in the thiocyanate group is clearly seen. The Busing \& Levy program was coded to convert the isotropic temperature factor coefficients to the form of equation (l) and two further cycles were carried out, refining the positional and anisotropic thermal motion parameters.

$$
\exp \left[-\left(h^{2} b_{11}+h k b_{12}+k^{2} b_{22}+h l b_{13}+k l b_{23}+l^{2} b_{33}\right)\right](1
$$

where:

$$
\begin{aligned}
& b_{11}=2 \pi^{2} a^{*} U_{11} \\
& b_{12}=4 \pi^{2} a^{*} b^{*} U_{12}, \quad \text { etc. }
\end{aligned}
$$

The value of R reduced further to 0.077 by the corrections for the anisotropic thermal motion of the atoms.

For these final computations, the hydrogen atom positions were calculated assuming a tetrahedral configuration about the carbon and nitrogen atoms in the ethylenediamine group, and $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of 1.075 and $1.005 \AA$, respectively, and an isotropic temperature factor approximately equal to the isotropic temperature factor of the carbon or nitrogen atom to which the hydrogen atom is attached.

Fig. 2. Difference synthesis section at $x=0.40$ with individual atom anisotropic temperature factor coefficients. Contour interval 0.25 e. \AA^{-2}, negative contours broken.

A difference synthesis section at $x=0.40$ calculated from the results of the final refinement cycle shows the degree of correction for the anisotropic thermal motion of the sulfur and nitrogen atoms in the thiocyanate group (Fig. 2). The positional and thermal motion parameters for this final calculation are listed in Table 1. A list of the 912 observed and calculated structure factors from this final calculation is given in Table 2. Table 3 lists the agreement for selected groups of reflections, where R^{*} includes $\left|F_{\min } / 2\right|$ and $\left|F_{\min } / 2\right|-\left|F_{c}\right|$ for those reflections with F_{c} greater than $F_{\text {min }}$.

Table 3. Agreement for selected groups of reflections

Group	R	R^{*}
$h k 0$	0.083	0.101
$0 k l$	0.082	0.090
$h 0 l$	0.061	0.070
$h 1 l$	0.064	0.081
$h 2 l$	0.089	0.108
$h 3 l$	0.078	0.098
$h 4 l$	0.075	0.097
$h 5 l$	0.097	0.120
Overall	0.077	0.096

A structure factor calculation based on the final parameters for the (010) projection had an R value of 0.061 . An electron-density projection on (010), using the phase angles determined from this structure factor calculation, is shown in Fig. 3. A representation of the structure projected on (100) is shown in Fig. 4.

Fig. 3. Final electron-density projection on (010).
Contour interval 2 e. \AA^{-2} (except at Cu and S centers), lowest contour $4 \mathrm{e} . \AA^{-2}$.

Fig. 4. Representation of structure projected on (100) plane.

Discussion

The arrangement of the ligands about the copper atom in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ has the four short bonds and two long bonds frequently encountered with Cu^{2+} ions. The four amino nitrogen atoms are located at the corners of a rectangle with a mean $\mathrm{Cu}-\mathrm{N}$ distance of $2.00 \AA$. The sulfur atom of the thiocyanate group completes a distorted octahedron at a distance of $3 \cdot 27 \AA$. The nearest thiocyanate nitrogen atom to the copper atom in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ is much too far at $4.07 \AA$ to be considered in the coordination sphere. The interatomic distances and angles are shown in Fig. 5 and 6, where the standard deviations were ob-

Fig. 5. Interatomic bond lengths and angles in the ethylenediamine ring.

Fig. 6. Interatomic bond lengths and angles in the thiocyanate group and the coordination octahedron.
tained from the estimated atomic positional errors calculated by the Busing \& Levy least-squares program.

The observed $\mathrm{Cu}-\mathrm{N}$ bond lengths in the ethylenediamine ring of 2.02 and $1.99 \AA$ agree with the $\mathrm{Cu}-\mathrm{N}(e n)$ bond lengths in $\left[\mathrm{Cu}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ of 2.02 and $2.01 \AA$ (Komiyama \& Lingafelter, 1964), 1.98 and $\mathrm{I} .99 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and I .97 and $1.98 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right] \mathrm{Br}$ (Mazzi, 1953).

These $\mathrm{Cu}-\mathrm{N}(e n)$ distances may be compared with the $\mathrm{Cu}-\mathrm{N}($ proline $)$ distance of $1 \cdot 99 \AA$ in $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}\right)_{2}\right]$. $2 \mathrm{H}_{2} \mathrm{O}$ (Mathieson \& Welsh, 1952), $\mathrm{Cu}-\mathrm{N}\left(\mathrm{NH}_{3}\right)$ distances of 2.06 and $2.04 \AA$ in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}$ (Mazzi, 1955), $2 \cdot 05 \AA$ in $\mathrm{NH}_{4}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{3} . \mathrm{NH}_{3}$ (Bukovska \& Porai-Koshits, 1960b), and $\mathrm{Cu}-\mathrm{N}($ NCS $)$ of $2 \cdot 10 \AA$ and $\mathrm{Cu}-\mathrm{N}(p y)$ of $2 \cdot 12 \AA$ in $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ (Porai-Koshits \& Tishchenko, 1959), 1-96 and $2.02 \AA$ for the $\mathrm{Cu}-\mathrm{N}($ succinonitrile $)$ distance in $\left[\mathrm{Cu}(\text { sucnit })_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Kinoshita, Matsuhara \& Saito, 1959), and $2.04 \AA$ for $\mathrm{Cu}-\mathrm{N}\left(\mathrm{NH}_{3}\right)$ in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$ (Bukovska \& Porai-Koshits, 1960a).
In $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$, the sulfur atom of the thiocyanate group completes the coordination sphere of the copper atom. The sulfur atom is almost perpendicular $\left(89^{\circ}\right)$ to the (en) $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ plane. The observed $\mathrm{Cu}-\mathrm{S}(S C N)$ distance of $3 \cdot 27 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ is significantly longer than the $\mathrm{Cu}-\mathrm{S}(S C N)$ distance of $3 \cdot 0 \AA$ in the binuclear $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$. The sum of the square $d s p^{2}$ radius for copper(II) of $\sim 1 \cdot 30 \AA$ and the van der Waals radius for sulfur of $1.85 \AA$ (Pauling, 1960) equals $3 \cdot 15 \AA$, which is approximately the observed distance.

The longer distances in the four-and-two complexes of copper have been observed in $\mathrm{Cu}_{2} \mathrm{Cl}(\mathrm{OH})_{3}(\mathrm{Cu}-\mathrm{Cl}=$ $2 \cdot 76 \AA$) (Wells, 1949), $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}(\mathrm{Cu}-\mathrm{O}=$ $3.37 \AA$) (Mazzi, 1955), $\mathrm{NH}_{4}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{3} . \mathrm{NH}_{3}$ $\left(\mathrm{Cu}-\mathrm{NH}_{3}=3.75 \AA\right) \quad$ (Bukovska \& Porai-Koshits, $19606), \quad\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl} \quad(\mathrm{Cu}-\mathrm{O}=2 \cdot 68 \quad \AA$ and $\mathrm{Cu}-\mathrm{Cl}=2.89 \AA$) and $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right] \mathrm{Br} \quad(\mathrm{Cu}-\mathrm{O}=$ $2.78 \AA$ and $\mathrm{Cu}-\mathrm{Br}=3.00 \AA$) (Mazzi, 1953), and other compounds.

The $85^{\circ} \mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bond angle in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ agrees with the angle of 86° in $\left[\mathrm{Cu}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}, 89^{\circ}$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$, and 90° in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right] \mathrm{Br}$. The single-bond C-C distance in the ethylenediamine molecule of $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ of $1.56 \AA$ is within one standard deviation of the $1-55 \AA$ distance in $\left[\mathrm{Cu}(\mathrm{en})_{3}\right]$ $\left(\mathrm{NO}_{3}\right)_{2}, 1.51 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$, and $1.53 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right] \mathrm{Br}$.

Unlike the symmetrical gauche form observed in nickel and cobalt ethylenediamine complexes (Brown \& Lingafelter, 1963), the spatial configuration of the ethylenediamine ring in the copper compounds has an unsymmetrical gauche form. This asymmetry in $\left[\mathrm{Cu}\left(\mathrm{en}_{2}\right)\right](\mathrm{SCN})_{2}$ has one carbon atom $+0.16 \AA$ from the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ plane and the other carbon atom at a greater distance of $-0.53 \AA$. The asymmetry in other bis(ethylenediamine)copper(II) complexes has observed distances of +0.16 and $-0.35 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$
(Komiyama \& Lingafelter, 1964), and +0.37 and $-0.68 \AA$ in $\left[\mathrm{Cu}(\mathrm{en})_{2}\left[\mathrm{Hg}(\mathrm{SCN})_{4}\right]\right.$ (Scouloudi, 1953). In

$$
\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl} \text { and }\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right] \mathrm{Br}
$$

(Mazzi, 1953), the asymmetrical gauche ethylenediamine molecules have one carbon displaced $+0.06 \AA$ toward the water molecule and the other carbon atom displaced $-0.53 \AA$ toward the chloride ion and $-0.49 \AA$ toward the bromide ion.
The orientation of the thiocyanate group in the structure of $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ is unique in the reported coordination compounds of the thiocyanates. The coordination octahedron or tetrahedron is completed by the nitrogen atom of the thiocyanate group in complexes of the first transition row of metals and by the sulfur atom in complexes of the metals of the second and third transition rows (Shaffer, 1959). In compounds as $\mathrm{Co}(\mathrm{py})_{2}(\mathrm{SCN})_{2}$ and $\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{SCN})_{2}$ (PoraiKoshits \& Tishchenko, 1959), D-[$\left.\mathrm{Pt}_{2}(\mathrm{SCN})_{2} \mathrm{Cl}_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$ (Owston \& Rowe, 1960), and the di-(2-thioimidazolidine) complexes of lead and cadmium thiocyanates (Cavalca, Nardelli \& Fava, 1959) we have examples of the coordination to both ends of the thiocyanate group by alternate metal atoms.

The N-C and C-S distances in the linear thiocyanate group of $1 \cdot 16$ and $1.62 \AA$, respectively, in $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ agree with the values of 1.20 and $1.64 \AA$ in $\left[\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right]$ (Brown \& Lingafelter, 1963), $1 \cdot 20$ and $1.60 \AA$ in $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NCS})_{2}\right]$ (Iukhno \& Porai-Koshits, 1957), $1 \cdot 13$ and $1.67 \AA$ in

$$
\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NCS})_{2}\right]
$$

(Porai-Koshits, Iukhno, Antsyshkina \& Dikareva, 1957), and 1.23 and $1.59 \AA$ in $\mathrm{K}_{2}\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]$ (Zhdanov \& Zvonkova, 1950). These distances agree with the covalent distances of 1.22 and $1.56 \AA$ in $\mathrm{H}_{3} \mathrm{C}$-NCS and 1.21 and $1.61 \AA$ in $\mathrm{H}_{3} \mathrm{C}-\mathrm{SCN}$ (Beard \& Daily, 1949), 1.22 and $1.56 \AA$ in HNCS (Beard \& Daily, 1950), and 1.13 and $1.69 \AA$ in $\operatorname{Se}(S C N)_{2}$ (Ohlberg \& Vaughan, 1954).
The nearest intermolecular distances from the $\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}$ molecule centered about $(0,0,0)$ are listed in Table 4. Atoms labeled $\mathrm{N}(1), \mathrm{C}(1)$, etc. are

Table 4.	$\left[\mathrm{Cu}(\mathrm{en})_{2}\right](\mathrm{SCN})_{2}-$ Nearest neighbors		
Atom in molecule at $(0,0,0)$	Nearest neighbor	Distance	Translation vector of neighbor atom
Cu	$\mathrm{N}(1)^{\prime}$	$4 \cdot 07 \AA$	$0,0,1$
S	$\mathrm{C}(3)$	$3 \cdot 59$	$1,0,0$
$\mathrm{~N}(1)$	$\mathrm{N}(2)$	$3 \cdot 09$	$0,0,1$
$\mathrm{~N}(2)$	$\mathrm{C}(2)^{\prime}$	$4 \cdot 31$	$1,1,1$
$\mathrm{~N}(3)$	$\mathrm{N}(1)^{\prime}$	$3 \cdot 30$	0,1
$\mathrm{C}(1)$	$\mathrm{C}(3)$	$3 \cdot 75$	$1,0,1$
$\mathrm{C}(2)$	$\mathrm{N}(1)^{\prime}$	$3 \cdot 49$	$1,1,1$
$\mathrm{C}(3)$	$\mathrm{C}(1)^{\prime}$	$3 \cdot 97$	$1,1,1$

located at the coordinates given in Table 1; atoms labeled $\mathrm{N}(1)^{\prime}, \mathrm{C}(1)^{\prime}$ etc. are related to this set by the symmetry center at $(0,0,0)$. The translation vector
relating the nearest neighbor to the corresponding atom in the molecule centered on ($0,0,0$) is also listed.

The computations on the IBM Type 650 and 709 were made possible by an unsupported research grant by the Research Computer Laboratory at the University of Washington, and the authors wish to acknowledge this support with sincere thanks.

References

Beard, C. I. \& Datly, B. P. (1949). J. Amer. Chem. Soc. 71, 927.
Beard, C. I. \& Daily, B. P. (1950). J. Chem. Phys. 18, 1437.

Berghuts, J., Hanafapel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Brown, B. W. \& Lingafelter, E. C. (1963). Acta Cryst. 16, 753.
Bugovsea, M. \& Porat-Koshits, M. A. (1960a). Soviet Phys.-Cryst. 5, 127.
Bukovska, M. \& Porat-Koshits, M. A. (1960b). Soviet Phys.-Cryst. 5, 130.
Busing, W. R. \& Levy, H. A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704, ORNL-59-4-37. Oak Ridge: Chem. Div., Oak Ridge National Laboratory.
Cavalca, L., Nardelli, M. \& Fava, G. (1959). Proc. Chem. Soc. p. 159.
Grossman, H. \& Schuck, B. (1906). Z. anorg. Chem. 50, 1.
Hartree, D. R. (1935). Internationale Tabellen zur Bestimmung von Kristallstrukturen, Vol. 2, p. 571. Berlin: Borntraeger.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Iukhno, E. K. \& Porai-Koshits, M. A. (1957). Soviet Phys.-Cryst. 2, 230.
Kinoshita, Y., Matsuhara, I. \& Saito, Y. (1959). Bull. Chem. Soc. Japan, 32, 741.
Komiyama, Y. \& Lingafelter, E. C. (1964). Acta Cryst. Submitted for publication.
Mathieson, A. \& Welsh, H. K. (1952). Acta Cryst. 5, 599.
MazzI, F. (1953). R.C. Soc. miner. Ital. 9, $148 . ~_{\text {. }}$
Mazzi, F. (1955). Acta Cryst. 8, 137.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Ohlberg, S. M. \& Vaughan, P. A. (1954). J. Amer. Chem. Soc. 76, 2649.
Owston, P. G. \& Rowe, J. M. (1960). Acta Cryst. 13, 253.
Padidng, L. (1960). The Nature of the Chemical Bond. 3rd ed., pp. 252, 260. Ithaca: Cornell Univ. Press.
Porat-Koshits, M. A. \& Tishchenko, G. N. (1959). Soviet Phys.-Cryst. 4, 216.
Porar-Koshits, M. A., Iukhno, E. K., Antsysheina, A. S. \& Dikareva E. (1957). Soviet Phys.-Cryst. 2, 366.

Scouloudi H. (1953). Acta Cryst. 6, 651.
Shaffer, C. E. (1959). IUPAC, International Conference on Coordination Chemistry, p. 153. London: The Chemical Society.
Stewart, J. M. \& Lingafelter, E. C. (1960). Rev. Sci. Instrum. 31, 399.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 392.

Wells, A. F. (1949). Acta Cryst. 2, 175.
Zhdanov, G. S. \& Zvonkova, Z. V. (1950). Zh. Fiz. Khim. SSSR, 24, 1339-1344.

